scalation.modeling.clustering
Members list
Type members
Classlikes
The Algorithm
enum specifies which algorithm to use.
The Algorithm
enum specifies which algorithm to use.
Attributes
- Supertypes
-
trait Enumtrait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
The Cluster
case class maintains information about clusters, the cluster id, center/centroid, cluster size, and measure of error. Note: the cluster assignment function as an array 'to_c' indicates how points are assigned to clusters.
The Cluster
case class maintains information about clusters, the cluster id, center/centroid, cluster size, and measure of error. Note: the cluster assignment function as an array 'to_c' indicates how points are assigned to clusters.
Value parameters
- c
-
the cluster id
- np
-
the number of points in the cluster (size)
Attributes
- See also
-
package.scala
for the definition of the 'distance' method - Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
The Clusterer
object provides a simple dataset (matrix of data points) for initial testing of clustering algorithms.
The Clusterer
trait provides a common framework for several clustering algorithms.
The Clusterer
trait provides a common framework for several clustering algorithms.
Attributes
- Companion
- object
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class HierClustererclass KMeansClustererclass KMeansClusterer2class KMeansClustererHWclass KMeansClustererPPclass KMeansPPClustererclass MarkovClustererShow all
The ClusteringPredictor
class is used to predict a response value for new vector 'z'. It works by finding the cluster that the point 'z' would belong to. The recorded response value for 'y' is then given as the predicted response. The per cluster recorded reponse value is the consensus (e.g., average) of the individual predictions for 'z' from the members of the cluster. Training involves clustering the points in data matrix 'x' and then computing each clusters reponse.
The ClusteringPredictor
class is used to predict a response value for new vector 'z'. It works by finding the cluster that the point 'z' would belong to. The recorded response value for 'y' is then given as the predicted response. The per cluster recorded reponse value is the consensus (e.g., average) of the individual predictions for 'z' from the members of the cluster. Training involves clustering the points in data matrix 'x' and then computing each clusters reponse.
Value parameters
- fname_
-
the names for all features/variables
- hparam
-
the number of nearest neighbors to consider
- x
-
the vectors/points of predictor data stored as rows of a matrix
- y
-
the response value for each vector in x
Attributes
- Companion
- object
- Supertypes
The ClusteringPredictor
companion object provides a factory functions.
The ClusteringPredictor
companion object provides a factory functions.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
ClusteringPredictor.type
Attributes
- See also
-
web.stanford.edu/~hastie/Papers/gap.pdf
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
GapStatistic.type
Cluster several vectors/points using hierarchical clustering. Start with each point forming its own cluster and merge clusters until there are only 'k'.
Cluster several vectors/points using hierarchical clustering. Start with each point forming its own cluster and merge clusters until there are only 'k'.
Value parameters
- k
-
stop when the number of clusters equals k
- x
-
the vectors/points to be clustered stored as rows of a matrix
Attributes
- Supertypes
The KMeansClusterer
class cluster several vectors/points using k-means clustering. Randomly assign points to k clusters (primary technique). Iteratively, reassign each point to the cluster containing the closest centroid. Stop when there are no changes to the clusters.
The KMeansClusterer
class cluster several vectors/points using k-means clustering. Randomly assign points to k clusters (primary technique). Iteratively, reassign each point to the cluster containing the closest centroid. Stop when there are no changes to the clusters.
Value parameters
- flags
-
the array of flags used to adjust the algorithm default: no post processing, no immediate return upon change
- k
-
the number of clusters to make
- x
-
the vectors/points to be clustered stored as rows of a matrix
Attributes
- See also
- Supertypes
- Known subtypes
The KMeansClusterer2
class cluster several vectors/points using k-means clustering. Randomly pick 'k' points as initial centroids (secondary technique). Iteratively, reassign each point to the cluster containing the closest centroid. Stop when there are no changes to the clusters.
The KMeansClusterer2
class cluster several vectors/points using k-means clustering. Randomly pick 'k' points as initial centroids (secondary technique). Iteratively, reassign each point to the cluster containing the closest centroid. Stop when there are no changes to the clusters.
Value parameters
- flags
-
the flags used to adjust the algorithm
- k
-
the number of clusters to make
- x
-
the vectors/points to be clustered stored as rows of a matrix
Attributes
- See also
- Supertypes
The KMeansClustererHW
class cluster several vectors/points using the Hartigan-Wong algorithm.
The KMeansClustererHW
class cluster several vectors/points using the Hartigan-Wong algorithm.
Value parameters
- flags
-
the flags used to adjust the algorithm
- k
-
the number of clusters to make
- x
-
the vectors/points to be clustered stored as rows of a matrix
Attributes
- Supertypes
- Known subtypes
-
class KMeansClustererPP
The KMeansClustererPP
class cluster several vectors/points using the Hartigan-Wong algorithm.
The KMeansClustererPP
class cluster several vectors/points using the Hartigan-Wong algorithm.
Value parameters
- flags
-
the flags used to adjust the algorithm
- k
-
the number of clusters to make
- x
-
the vectors/points to be clustered stored as rows of a matrix
Attributes
- Supertypes
-
class KMeansClustererHWclass KMeansClusterertrait Clustererclass Objecttrait Matchableclass AnyShow all
The KMeansPPClusterer
class cluster several vectors/points using the k-means++ clustering technique.
Value parameters
- algo
-
the clustering algorithm to use
- flags
-
the flags used to adjust the algorithm
- k
-
the number of clusters to make
- x
-
the vectors/points to be clustered stored as rows of a matrix
Attributes
- See also
- Companion
- object
- Supertypes
The KMeansPPClusterer
companion object supplies a factory function.
The KMeansPPClusterer
companion object supplies a factory function.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
KMeansPPClusterer.type
The KMeansPPClustererTester
object includes test methods to aid in the testing of the KMeansPPClusterer
class.
The KMeansPPClustererTester
object includes test methods to aid in the testing of the KMeansPPClusterer
class.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
The MarkovClusterer
class implements a Markov Clustering Algorithm 'MCL' and is used to cluster nodes in a graph. The graph is represented as an edge-weighted adjacency matrix (a non-zero cell indicates nodes i and j are connected). The primary constructor takes either a graph (adjacency matrix) or a Markov transition matrix as input. If a graph is passed in, the normalize method must be called to convert it into a Markov transition matrix. Before normalizing, it may be helpful to add self loops to the graph. The matrix (graph or transition) may be either dense or sparse. See the MarkovClustererTest
object at the bottom of the file for examples.
The MarkovClusterer
class implements a Markov Clustering Algorithm 'MCL' and is used to cluster nodes in a graph. The graph is represented as an edge-weighted adjacency matrix (a non-zero cell indicates nodes i and j are connected). The primary constructor takes either a graph (adjacency matrix) or a Markov transition matrix as input. If a graph is passed in, the normalize method must be called to convert it into a Markov transition matrix. Before normalizing, it may be helpful to add self loops to the graph. The matrix (graph or transition) may be either dense or sparse. See the MarkovClustererTest
object at the bottom of the file for examples.
Value parameters
- k
-
the strength of expansion
- r
-
the strength of inflation
- t
-
either an adjacency matrix of a graph or a Markov transition matrix
Attributes
- Supertypes
The RandomGraph
class generates random undirected graphs with clusters (as adjacency matrices).
The RandomGraph
class generates random undirected graphs with clusters (as adjacency matrices).
Value parameters
- c
-
the number of clusters to generate
- n
-
the number of nodes in the graph
- p
-
the probability that any two nodes are connected
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
The TightClusterer
class uses tight clustering to eliminate points that do not not fit well in any cluster.
The TightClusterer
class uses tight clustering to eliminate points that do not not fit well in any cluster.
Value parameters
- k0
-
the number of clusters to make
- kmin
-
the minimum number of clusters to make
- s
-
the random number stream (to vary the clusters made)
- x
-
the vectors/points to be clustered stored as rows of a matrix
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Value members
Concrete methods
The clusteringPredictorTest
object is used to test the ClusteringPredictor
class.
The clusteringPredictorTest
object is used to test the ClusteringPredictor
class.
runMain scalation.modeling.clustering.clusteringPredictorTest
Attributes
The clusteringPredictorTest2
object is used to test the ClusteringPredictor
class.
The clusteringPredictorTest2
object is used to test the ClusteringPredictor
class.
runMain scalation.modeling.clustering.clusteringPredictorTest2
Attributes
The clusteringPredictorTest3
object is used to test the ClusteringPredictor
class. Test on AutoMPG dataset and compare with KNN_Regression
.
The clusteringPredictorTest3
object is used to test the ClusteringPredictor
class. Test on AutoMPG dataset and compare with KNN_Regression
.
runMain scalation.modeling.clustering.clusteringPredictorTest3
Attributes
Compute a distance metric (e.g., distance squared) between vectors/points x and z. Override this methods to use a different metric, e.g., norm - the Euclidean distance, 2-norm norm1 - the Manhattan distance, 1-norm Currently uses squared Euclidean norm used for efficiency, may use other norms.
Compute a distance metric (e.g., distance squared) between vectors/points x and z. Override this methods to use a different metric, e.g., norm - the Euclidean distance, 2-norm norm1 - the Manhattan distance, 1-norm Currently uses squared Euclidean norm used for efficiency, may use other norms.
Value parameters
- x
-
the first vector/point
- z
-
the second vector/point
Attributes
The gapStatisticTest
main function is used to test the GapStatistic
object.
The gapStatisticTest
main function is used to test the GapStatistic
object.
runMain scalation.modeling.clustering.gapStatisticTest
Attributes
The gapStatisticTest2
main function is used to test the GapStatistic
object.
The gapStatisticTest2
main function is used to test the GapStatistic
object.
runMain scalation.modeling.clustering.gapStatisticTest2
Attributes
The hierClustererTest
object is used to test the HierClusterer
class.
The hierClustererTest
object is used to test the HierClusterer
class.
runMain scalation.modeling.clustering.hierClustererTest
Attributes
The hierClustererTest2
object is used to test the HierClusterer
class.
The hierClustererTest2
object is used to test the HierClusterer
class.
runMain scalation.modeling.clustering.hierClustererTest2
Attributes
The kMeansClusterer2Test
object is used to test the KMeansClusterer2
class.
The kMeansClusterer2Test
object is used to test the KMeansClusterer2
class.
runMain scalation.modeling.clusterer.kMeansClusterer2Test
Attributes
The kMeansClusterer2Test2
object is used to test the KMeansClusterer2
class.
The kMeansClusterer2Test2
object is used to test the KMeansClusterer2
class.
runMain scalation.modeling.clusterer.kMeansClusterer2Test2
Attributes
The kMeansClusterer2Test2
object is used to test the KMeansClusterer2
class.
The kMeansClusterer2Test2
object is used to test the KMeansClusterer2
class.
runMain scalation.modeling.clustering.kMeansClusterer2Test3
Attributes
The kMeansClusterer2Test4
object is used to test the KMeansClusterer2
class.
The kMeansClusterer2Test4
object is used to test the KMeansClusterer2
class.
runMain scalation.modeling.clustering.kMeansClusterer2Test4
Attributes
The kMeansClustererTestHW
object is used to test the KMeansClustererHW
class.
The kMeansClustererTestHW
object is used to test the KMeansClustererHW
class.
runMain scalation.modeling.clustering.kMeansClustererHWTest
Attributes
The kMeansClustererHWTest2
object is used to test the KMeansClustererHW
class.
The kMeansClustererHWTest2
object is used to test the KMeansClustererHW
class.
runMain scalation.modeling.clustering.kMeansClustererHWTest2
Attributes
The kMeansClustererHWTest3
object is used to test the KMeansClustererHW
class.
The kMeansClustererHWTest3
object is used to test the KMeansClustererHW
class.
runMain scalation.modeling.clustering.kMeansClustererHWTest3
Attributes
The kMeansClustererTestPP
object is used to test the KMeansClustererPP
class.
The kMeansClustererTestPP
object is used to test the KMeansClustererPP
class.
runMain scalation.modeling.clustering.kMeansClustererPPTest
Attributes
The kMeansClustererPPTest
object is used to test the KMeansClustererPP
class.
The kMeansClustererPPTest
object is used to test the KMeansClustererPP
class.
runMain scalation.modeling.clustering.kMeansClustererPPTest2
Attributes
The kMeansClustererPPTest3
object is used to test the KMeansClustererPP
class.
The kMeansClustererPPTest3
object is used to test the KMeansClustererPP
class.
runMain scalation.modeling.clustering.kMeansClustererPPTest3
Attributes
The kMeansClustererTest
object is used to test the KMeansClusterer
class.
The kMeansClustererTest
object is used to test the KMeansClusterer
class.
runMain scalation.modeling.clustering.kMeansClustererTest
Attributes
The kMeansClustererTest2
object is used to test the KMeansClusterer
class.
The kMeansClustererTest2
object is used to test the KMeansClusterer
class.
runMain scalation.modeling.clustering.kMeansClustererTest2
Attributes
The kMeansClustererTest3
object is used to test the KMeansClusterer
class.
The kMeansClustererTest3
object is used to test the KMeansClusterer
class.
runMain scalation.modeling.clustering.kMeansClustererTest3
Attributes
The kMeansClustererTest4
object is used to test the KMeansClusterer
class.
The kMeansClustererTest4
object is used to test the KMeansClusterer
class.
runMain scalation.modeling.clustering.kMeansClustererTest4
Attributes
The kMeansPPClustererTest
main function is used to test the KMeansPPClusterer
class.
The kMeansPPClustererTest
main function is used to test the KMeansPPClusterer
class.
runMain scalation.modeling.clustering.kMeansPPClustererTest
Attributes
The kMeansPPClustererTest2
main function is used to test the KMeansPPClusterer
class.
The kMeansPPClustererTest2
main function is used to test the KMeansPPClusterer
class.
runMain scalation.modeling.clustering.kMeansPPClustererTest2
Attributes
The kMeansPPClustererTest3
main function is used to test the KMeansPPClusterer
class.
The kMeansPPClustererTest3
main function is used to test the KMeansPPClusterer
class.
runMain scalation.modeling.clustering.kMeansPPClustererTest3
Attributes
The kMeansPPClustererTest4
main function is used to test the KMeansPPClusterer
class.
The kMeansPPClustererTest4
main function is used to test the KMeansPPClusterer
class.
runMain scalation.modeling.clustering.kMeansPPClustererTest4
Attributes
The markovClustererTest
object is used to test the MarkovClusterer
class.
The markovClustererTest
object is used to test the MarkovClusterer
class.
Attributes
- See also
-
www.cs.ucsb.edu/~xyan/classes/CS595D-2009winter/MCL_Presentation2.pdf ^ > runMain scalation.modeling.clustering.markovClustererTest
The markovClustererTest2
object is used to test the MarkovClusterer
class. ^ > runMain scalation.modeling.clustering.markovClustererTest2
The markovClustererTest2
object is used to test the MarkovClusterer
class. ^ > runMain scalation.modeling.clustering.markovClustererTest2
Attributes
The randomGraphTest
object is used to test the RandomGraph
class.
The randomGraphTest
object is used to test the RandomGraph
class.
runMain scalation.modeling.clustering.randomGraphTest
Attributes
The tightClustererTest
main function is used to test the TightClusterer
class.
The tightClustererTest
main function is used to test the TightClusterer
class.
runMain scalation.modeling.clustering.tightClustererTest