NeuralNet_2L

scalation.modeling.neuralnet.NeuralNet_2L
See theNeuralNet_2L companion class
object NeuralNet_2L extends Scaling

The NeuralNet_2L companion object provides factory methods for creating two-layer (no hidden layer) neural networks. Note, 'scale' is defined in Scaling.

Attributes

Companion
class
Graph
Supertypes
trait Scaling
class Object
trait Matchable
class Any
Self type

Members list

Value members

Concrete methods

def apply(xy: MatrixD, fname: Array[String], hparam: HyperParameter, f: AFF)(col: Int): NeuralNet_2L

Create a NeuralNet_2L with automatic rescaling from a combined data matrix.

Create a NeuralNet_2L with automatic rescaling from a combined data matrix.

Value parameters

col

the first designated response column (defaults to the last column)

f

the activation function family for layers 1->2 (input to output)

fname

the feature/variable names (defaults to null)

hparam

the hyper-parameters (defaults to Optimizer.hp)

xy

the combined input and output matrix

Attributes

def perceptron(x: MatrixD, y_: VectorD, fname: Array[String], hparam: HyperParameter, f: AFF): NeuralNet_2L

Create a NeuralNet_2L with automatic rescaling from a data matrix and response vector. As the number of output nodes is one in this case, it is effectively a perceptron.

Create a NeuralNet_2L with automatic rescaling from a data matrix and response vector. As the number of output nodes is one in this case, it is effectively a perceptron.

Value parameters

f

the activation function family for layers 1->2 (input to output)

fname

the feature/variable names (defaults to null)

hparam

the hyper-parameters (defaults to Optimizer.hp)

x

the input/data m-by-n matrix

y_

the output/response m-vector

Attributes

def rescale(x: MatrixD, y: MatrixD, fname: Array[String], hparam: HyperParameter, f: AFF): NeuralNet_2L

Create a NeuralNet_2L with automatic rescaling from a data matrix and response matrix.

Create a NeuralNet_2L with automatic rescaling from a data matrix and response matrix.

Value parameters

f

the activation function family for layers 1->2 (input to output)

fname

the feature/variable names (defaults to null)

hparam

the hyper-parameters (defaults to Optimizer.hp)

x

the input/data m-by-n matrix

y

the output/response m-by-ny matrix

Attributes

Inherited methods

def setScale(scale_: Boolean): Unit

Set the scale flag to the given value.

Set the scale flag to the given value.

Value parameters

scale_

the new value for the scale flag

Attributes

Inherited from:
Scaling

Inherited fields

protected var scale: Boolean

The 'scale' flag indicated whether the data is to be rescaled/normalized

The 'scale' flag indicated whether the data is to be rescaled/normalized

Attributes

Inherited from:
Scaling