scalation.random
Members list
Type members
Classlikes
This class generates Bernoulli
random variates. This discrete RV models the one trial (success is 1, failure is 0). Note, the gen2 method gives a range of 2 (-1 to 1).
This class generates Bernoulli
random variates. This discrete RV models the one trial (success is 1, failure is 0). Note, the gen2 method gives a range of 2 (-1 to 1).
Value parameters
- p
-
the probability of success
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates Beta
random variates. This continuous RV models random proportions. Beta = Gamma1 / (Gamma1 + Gamma2).
This class generates Beta
random variates. This continuous RV models random proportions. Beta = Gamma1 / (Gamma1 + Gamma2).
Value parameters
- alpha
-
the shape parameter for Gamma1
- beta
-
the shape parameter for Gamma2
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates Binomial
random variates. This discrete RV models the number of successes in n trials.
This class generates Binomial
random variates. This discrete RV models the number of successes in n trials.
Value parameters
- n
-
the number of independent trials
- p
-
the probability of success
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
The CDF
object contains methods for computing 'F(x)', the Cumulative Distribution Functions 'CDF's for popular distributions: Uniform
Exponential
Weibel
Empirical
StandardNormal
StudentT
ChiSquare
Fisher
For a given CDF 'F' with argument 'x', compute 'p = F(x)'.
The CDF
object contains methods for computing 'F(x)', the Cumulative Distribution Functions 'CDF's for popular distributions: Uniform
Exponential
Weibel
Empirical
StandardNormal
StudentT
ChiSquare
Fisher
For a given CDF 'F' with argument 'x', compute 'p = F(x)'.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
CDF.type
This class generates Cauchy
(or Lorentz) random variates. This continuous RV models data with heavier tails than normally distributed.
This class generates Cauchy
(or Lorentz) random variates. This continuous RV models data with heavier tails than normally distributed.
Value parameters
- alpha
-
the location parameter (median)
- beta
-
the scale parameter
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates ChiSquare
random variates. This continuous RV models the variance of a distribution.
This class generates ChiSquare
random variates. This continuous RV models the variance of a distribution.
Value parameters
- df
-
the degrees of freedom
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates Dice
random variates for a given distribution specified using a cumulative distribution function (cdf). This discrete RV models the roll of dice numbered 0, 1, ..., n-1. Add 1 for 1 to n.
This class generates Dice
random variates for a given distribution specified using a cumulative distribution function (cdf). This discrete RV models the roll of dice numbered 0, 1, ..., n-1. Add 1 for 1 to n.
Value parameters
- cdf
-
the distribution function (cdf)
- stream
-
the random number stream
Attributes
- See also
-
Randi
for an easy way to use fair dice 'Randi (1, 6)'. - Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
The Dir
class generates Dirichlet random variables. The Dirichlet distribution is the distribution over the space of multinomial distributions.
The Dir
class generates Dirichlet random variables. The Dirichlet distribution is the distribution over the space of multinomial distributions.
Value parameters
- alpha
-
the concentration parameters
- stream
-
the random number stream
Attributes
- See also
-
en.wikipedia.org/wiki/Dirichlet_distribution
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
This class generates generalized Discrete
random variates for a given distribution specified using either a probability mass function (pmf) or a cumulative distribution function (cdf). This discrete RV models arbitrary experiments with discrete outcomes.
This class generates generalized Discrete
random variates for a given distribution specified using either a probability mass function (pmf) or a cumulative distribution function (cdf). This discrete RV models arbitrary experiments with discrete outcomes.
Value parameters
- cumulative
-
whether 'dist' is cumulative (cdf) or not (pmf)
- dist
-
the distribution function (pdf or cdf)
- stream
-
the random number stream
- x
-
the x-coordinate values (mass points)
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates Erlang
random variates. This continuous RV models the time until k stages complete.
This class generates Erlang
random variates. This continuous RV models the time until k stages complete.
Value parameters
- k
-
the number of stages (or Exponential samples)
- mu
-
the mean of exponential samples (Erlang mean = mu * k)
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates Exponential
random variates. This continuous RV models the time until an event occurs.
This class generates Exponential
random variates. This continuous RV models the time until an event occurs.
Value parameters
- mu
-
the mean
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates Fisher
(F-Distribution) random variates. This continuous RV models the ratio of variances.
This class generates Fisher
(F-Distribution) random variates. This continuous RV models the ratio of variances.
Value parameters
- df1
-
the degrees of freedom for numerator Chi-Square
- df2
-
the degrees of freedom for denominator Chi-Square
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates Gamma
random variates. This continuous RV models the time until an event occurs. Note: variance = alpha * beta ^ 2.
This class generates Gamma
random variates. This continuous RV models the time until an event occurs. Note: variance = alpha * beta ^ 2.
Value parameters
- alpha
-
the shape parameter
- beta
-
the scale parameter
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates Geometric
random variates. This discrete RV models the number of failures before the first success.
This class generates Geometric
random variates. This discrete RV models the number of failures before the first success.
Value parameters
- p
-
the probability of success
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates HyperExponential
random variates (two rates). This continuous RV models the time until an event occurs (higher coefficient of variation than exponential distribution).
This class generates HyperExponential
random variates (two rates). This continuous RV models the time until an event occurs (higher coefficient of variation than exponential distribution).
Value parameters
- mu1
-
the first mean (1 / lambda1)
- mu2
-
the second mean (1 / lambda2)
- p
-
the probability of first vs. second rates
- stream
-
the random number stream
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates HyperExponential_
random variates. This continuous RV models the time until an event occurs (higher coefficient of variation than exponential distribution). FIX
This class generates HyperExponential_
random variates. This continuous RV models the time until an event occurs (higher coefficient of variation than exponential distribution). FIX
Value parameters
- mu
-
the mean
- sigma
-
the standard deviation
- stream
-
the random number stream
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates HyperGeometric
random variates. This discrete RV models the number of successes in n draws from a finite population.
This class generates HyperGeometric
random variates. This discrete RV models the number of successes in n draws from a finite population.
Value parameters
- n
-
the number of draws (balls drawn)
- p
-
the probability of success (red balls)
- pop
-
the size of the finite population (total number of balls)
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates Known
random variates. The values come from a know array of values (useful for testing).
This class generates Known
random variates. The values come from a know array of values (useful for testing).
Value parameters
- stream
-
the random number stream
- values
-
the known array of values
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates LogNormal
random variates. This continuous RV models data that is normally distributed after a log transformation.
This class generates LogNormal
random variates. This continuous RV models data that is normally distributed after a log transformation.
Value parameters
- mu
-
the mean for underlying Normal
- sigma2
-
the variance (sigma squared) for underlying Normal
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates Logistic
random variates. This continuous RV models logistically distributed data (stretched Normal).
This class generates Logistic
random variates. This continuous RV models logistically distributed data (stretched Normal).
Value parameters
- a
-
the location parameter
- b
-
the scale parameter
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
The Multinomial
class generates random variate vectors following the multinomial distribution. This discrete RV models the multinomial trials, which generalize Bernoulli trials ({0, 1} to the case where the outcome is in {0, 1, ..., k-1}.
The Multinomial
class generates random variate vectors following the multinomial distribution. This discrete RV models the multinomial trials, which generalize Bernoulli trials ({0, 1} to the case where the outcome is in {0, 1, ..., k-1}.
Value parameters
- n
-
the number of independent trials
- p
-
array of cumulative probabilities as CDF values
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateVecclass Objecttrait Matchableclass AnyShow all
This class generates arrival times according to a NHPoissonProcess
, an Non-Homogeneous Process Process (NHPP), where the arrival rate function lambda(t) is piece-wise constant. Rates are constant over basic time intervals of length 'dt'.
This class generates arrival times according to a NHPoissonProcess
, an Non-Homogeneous Process Process (NHPP), where the arrival rate function lambda(t) is piece-wise constant. Rates are constant over basic time intervals of length 'dt'.
Value parameters
- dt
-
the length the basic time intervals
- lambda
-
the vector of arrival rates
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass TimeVariateclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates NegativeBinomial
random variates. This discrete RV models the number of failures before s-th success.
This class generates NegativeBinomial
random variates. This discrete RV models the number of failures before s-th success.
Value parameters
- p
-
the probability of success
- s
-
the number of successes
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates Normal
(Gaussian) random variates. This continuous RV models normally distributed data (bell curve). When summed, most distributions tend to Normal (Central Limit Theorem).
This class generates Normal
(Gaussian) random variates. This continuous RV models normally distributed data (bell curve). When summed, most distributions tend to Normal (Central Limit Theorem).
Value parameters
- mu
-
the mean
- sigma2
-
the variance (sigma squared)
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
The NormalMat
class generates Normal (Gaussian) random variate matrices according to the Normal distribution with scalar mean 'mu' and variance 'sig2'. This continuous RVM models multiple instances of normally distributed multidimensional data and treats the variables as identical and independent.
The NormalMat
class generates Normal (Gaussian) random variate matrices according to the Normal distribution with scalar mean 'mu' and variance 'sig2'. This continuous RVM models multiple instances of normally distributed multidimensional data and treats the variables as identical and independent.
Value parameters
- dim
-
the number of rows in the matrix
- dim2
-
the number of columns in the matrix
- mu
-
the mean
- sig2
-
the variance (stdev^2)
- stream
-
the random number stream
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateMatclass Objecttrait Matchableclass AnyShow all
The NormalTen
class generates Normal (Gaussian) random variate matrices according to the Normal distribution with scalar mean 'mu' and variance 'sig2'. This continuous RVT models multiple instances of normally distributed multidimensional data and treats the variables as identical and independent.
The NormalTen
class generates Normal (Gaussian) random variate matrices according to the Normal distribution with scalar mean 'mu' and variance 'sig2'. This continuous RVT models multiple instances of normally distributed multidimensional data and treats the variables as identical and independent.
Value parameters
- dim
-
the number of rows in the tensor
- dim2
-
the number of columns in the tensor
- dim3
-
the number of sheets in the tensor
- mu
-
the mean
- sig2
-
the variance (stdev^2)
- stream
-
the random number stream
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateTenclass Objecttrait Matchableclass AnyShow all
The NormalVec
class generates Normal (Gaussian) random variate vectors according to the Multivariate Normal distribution with mean 'mu' and covariance 'cov'. This continuous RVV models normally distributed multidimensional data.
The NormalVec
class generates Normal (Gaussian) random variate vectors according to the Multivariate Normal distribution with mean 'mu' and covariance 'cov'. This continuous RVV models normally distributed multidimensional data.
Value parameters
- cov
-
the covariance matrix
- mu
-
the mean vector
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateVecclass Objecttrait Matchableclass AnyShow all
The NormalVec_
class generates Normal (Gaussian) random variate vectors according to the Multivariate Normal distribution with vector mean 'mu' and standard deviation 'sig'. This continuous RVV models normally distributed multidimensional data and treats the variables as independent.
The NormalVec_
class generates Normal (Gaussian) random variate vectors according to the Multivariate Normal distribution with vector mean 'mu' and standard deviation 'sig'. This continuous RVV models normally distributed multidimensional data and treats the variables as independent.
Value parameters
- mu
-
the mean vector
- sig
-
the standard deviation vector
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateVecclass Objecttrait Matchableclass AnyShow all
The NormalVec_c
class generates Normal (Gaussian) random variate vectors according to the Multivariate Normal distribution with constant mean 'mu' and variance 'sig2'. This continuous RVV models normally distributed multidimensional data and treats the variables as independent.
The NormalVec_c
class generates Normal (Gaussian) random variate vectors according to the Multivariate Normal distribution with constant mean 'mu' and variance 'sig2'. This continuous RVV models normally distributed multidimensional data and treats the variables as independent.
Value parameters
- mu
-
the common mean
- n
-
the number of elements in the vector
- sig2
-
the common variance (standard deviation squared)
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateVecclass Objecttrait Matchableclass AnyShow all
The PermutedVecD
class generates random permutations of a vector of doubles.
The PermutedVecD
class generates random permutations of a vector of doubles.
Value parameters
- stream
-
the random number stream
- x
-
the vector of doubles to permute
Attributes
- See also
-
maths-people.anu.edu.au/~brent/pd/Arndt-thesis.pdf
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateVecclass Objecttrait Matchableclass AnyShow all
The PermutedVecI
class generates random permutations of a vector of integers.
The PermutedVecI
class generates random permutations of a vector of integers.
Value parameters
- stream
-
the random number stream
- x
-
the vector of integers to permute
Attributes
- See also
-
maths-people.anu.edu.au/~brent/pd/Arndt-thesis.pdf
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateVecclass Objecttrait Matchableclass AnyShow all
This class generates Poisson
random variates (discrete). This discrete RV models the number of events in a time interval of unit length.
This class generates Poisson
random variates (discrete). This discrete RV models the number of events in a time interval of unit length.
Value parameters
- mu
-
the mean
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
The PoissonProcess
class generates arrival times according to a Poisson Process. Given the current arrival time 't', generate the next arrival time.
The PoissonProcess
class generates arrival times according to a Poisson Process. Given the current arrival time 't', generate the next arrival time.
Value parameters
- lambda
-
the arrival rate (arrivals per unit time)
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass TimeVariateclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates PowerLaw
random variates: 'cx^-y' for 'x in [a, b]'. This continuous RV models power-law distributions.
This class generates PowerLaw
random variates: 'cx^-y' for 'x in [a, b]'. This continuous RV models power-law distributions.
Value parameters
- a
-
the minimum value parameter
- b
-
the maximum value parameter
- stream
-
the random number stream
- y
-
the power parameter to be used
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
The ProbabilityVec
class generates a probability vector where the 'i'th probability is '1/n' with a +/- randomizing displacement of at most 'd'. Note, the probability vector must add to one.
The ProbabilityVec
class generates a probability vector where the 'i'th probability is '1/n' with a +/- randomizing displacement of at most 'd'. Note, the probability vector must add to one.
Value parameters
- d
-
the randomizing displacement, must be in [0, 1]
- n
-
the dimension/size of the probability vector
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateVecclass Objecttrait Matchableclass AnyShow all
The Quantile
object contains methods for computing 'Finv', the "inverse" Cumulative Distribution Functions (iCDF's) for popular sampling distributions: StandardNormal
, StudentT
, ChiSquare
and Fisher
. For a given CDF F and probability/quantile p, compute x such that F(x) = p. The iCDF may be thought of as giving value of x for which the area under the curve from -infinity to x of the probability density function (pdf) is equal to p.
The Quantile
object contains methods for computing 'Finv', the "inverse" Cumulative Distribution Functions (iCDF's) for popular sampling distributions: StandardNormal
, StudentT
, ChiSquare
and Fisher
. For a given CDF F and probability/quantile p, compute x such that F(x) = p. The iCDF may be thought of as giving value of x for which the area under the curve from -infinity to x of the probability density function (pdf) is equal to p.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
Quantile.type
The RNG
trait is the base class for all ScalaTion Random Number Generators. The extending classes must implement a 'gen' method that generates random real numbers in the range (0, 1). They must also implement an 'igen' methods to return stream values.
The RNG
trait is the base class for all ScalaTion Random Number Generators. The extending classes must implement a 'gen' method that generates random real numbers in the range (0, 1). They must also implement an 'igen' methods to return stream values.
Value parameters
- stream
-
the random number stream index (0 to N_STREAMS - 1 = 999)
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
The RNGStream
object allows for random selection of streams for applications where reproducibility of random numbers is not desired.
The RNGStream
object allows for random selection of streams for applications where reproducibility of random numbers is not desired.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
RNGStream.type
The RNGTester
object conducts tests of Random Number Generators: (1) meansTest: Means Test (including a speed test). (2) distributionTest: Chi-square Goodness of Fit Test. (3) distributionTest_KS: K-S Goodness of Fit Test. (4) correlationTest: Correlation Test.
The RNGTester
object conducts tests of Random Number Generators: (1) meansTest: Means Test (including a speed test). (2) distributionTest: Chi-square Goodness of Fit Test. (3) distributionTest_KS: K-S Goodness of Fit Test. (4) correlationTest: Correlation Test.
runMain scalation.random.RNGTest
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
RNGTester.type
This class generates Randi
random variates (random integers: a, ..., b). This discrete RV models equi-probable integral outcomes.
This class generates Randi
random variates (random integers: a, ..., b). This discrete RV models equi-probable integral outcomes.
Value parameters
- a
-
the lower bound (inclusive)
- b
-
the upper bound (inclusive)
- stream
-
the random number stream
Attributes
This class generates Randi0
random variates (random integers: 0, ..., b). This discrete RV models equi-probable integral outcomes starting with 0.
This class generates Randi0
random variates (random integers: 0, ..., b). This discrete RV models equi-probable integral outcomes starting with 0.
Value parameters
- b
-
the upper bound (>= 0) (inclusive)
- stream
-
the random number stream
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates RandiU0
random variates (unique random integers: 0, ..., b). This discrete RV models equi-probable integral outcomes starting with 0.
This class generates RandiU0
random variates (unique random integers: 0, ..., b). This discrete RV models equi-probable integral outcomes starting with 0.
Value parameters
- b
-
the upper bound (>= 0) (inclusive)
- stream
-
the random number stream
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
The Random
class generates random real numbers in the range (0, 1). It implements, using 64-bit integers (Long's), the 'MRG31k3p' generator developed by L'Ecuyer and Touzin, described in "FAST COMBINED MULTIPLE RECURSIVE GENERATORS WITH MULTIPLIERS OF THE FORM a = 2^q +/- 2^r". MRG31k3p is a Combined Multiple Recursive Generator (CMRG) shown to have good performance and statistical properties for simulations. It has a period of about 2^185 and is considered to be a faster alternative to the popular 'MRG32k3' generator. MRG31k3p combines MRG1 and MRG2.
The Random
class generates random real numbers in the range (0, 1). It implements, using 64-bit integers (Long's), the 'MRG31k3p' generator developed by L'Ecuyer and Touzin, described in "FAST COMBINED MULTIPLE RECURSIVE GENERATORS WITH MULTIPLIERS OF THE FORM a = 2^q +/- 2^r". MRG31k3p is a Combined Multiple Recursive Generator (CMRG) shown to have good performance and statistical properties for simulations. It has a period of about 2^185 and is considered to be a faster alternative to the popular 'MRG32k3' generator. MRG31k3p combines MRG1 and MRG2.
MRG1: x_i = (0 + a_12 x_i-2 + a_13 x_i-3) % M1
MRG2: x_i = (a_21 x_i-1 + 0 + a_23 x_i-3) % M2
where a_12 = 2^22, a_13 = 2^7+1, a_21 = 2^15 and a_23 = 2^15+1.
Value parameters
- stream
-
the random number stream index
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait RNGclass Objecttrait Matchableclass AnyShow all
The Random0
class generates random real numbers in the range (0, 1). It implements, using 32-bit integers (Int's).
The Random0
class generates random real numbers in the range (0, 1). It implements, using 32-bit integers (Int's).
x_i = (x_i-1 + 1) % m
Value parameters
- stream
-
the random number stream index
Attributes
- See also
-
Random
for a better random number generator - Supertypes
-
trait Serializabletrait Producttrait Equalstrait RNGclass Objecttrait Matchableclass AnyShow all
The Random2
class generates random real numbers in the range (0, 1). It implements, using 32-bit integers (Int's), the 'MRG31k3p' generator developed by L'Ecuyer and Touzin, described in "FAST COMBINED MULTIPLE RECURSIVE GENERATORS WITH MULTIPLIERS OF THE FORM a = 2^q +/- 2^r". MRG31k3p is a Combined Multiple Recursive Generator (CMRG) shown to have good performance and statistical properties for simulations. It has a period of about 2^185 and is considered to be a faster alternative to the popular 'MRG32k3' generator. MRG31k3p combines MRG1 and MRG2.
The Random2
class generates random real numbers in the range (0, 1). It implements, using 32-bit integers (Int's), the 'MRG31k3p' generator developed by L'Ecuyer and Touzin, described in "FAST COMBINED MULTIPLE RECURSIVE GENERATORS WITH MULTIPLIERS OF THE FORM a = 2^q +/- 2^r". MRG31k3p is a Combined Multiple Recursive Generator (CMRG) shown to have good performance and statistical properties for simulations. It has a period of about 2^185 and is considered to be a faster alternative to the popular 'MRG32k3' generator. MRG31k3p combines MRG1 and MRG2.
MRG1: x_i = (0 + a_12 x_i-2 + a_13 x_i-3) % M1
MRG2: x_i = (a_21 x_i-1 + 0 + a_23 x_i-3) % M2
where a_12 = 2^22, a_13 = 2^7+1, a_21 = 2^15 and a_23 = 2^15+1.
Value parameters
- stream
-
the random number stream index
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait RNGclass Objecttrait Matchableclass AnyShow all
The Random3
class generates random real numbers in the range (0, 1). It implements, using 64-bit integers (Int's), the 'MINSTD' generator, which is a multiplicative Linear Congruential Generator (LCG). These generators were commonly used in the last century.
The Random3
class generates random real numbers in the range (0, 1). It implements, using 64-bit integers (Int's), the 'MINSTD' generator, which is a multiplicative Linear Congruential Generator (LCG). These generators were commonly used in the last century.
x_i = a x_i-1 % m
Value parameters
- stream
-
the random number stream index
Attributes
- See also
-
http://random.mat.sbg.ac.at/results/karl/server/node4.html#SECTION00042000000000000000 In case a better generator is needed, a Multiple Recursive Generator (MRG) or Composite Multiple Recursive Generator (CMRG) should be used.
Random
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait RNGclass Objecttrait Matchableclass AnyShow all
The RandomMatD
class generates a random matrix of doubles.
The RandomMatD
class generates a random matrix of doubles.
Value parameters
- density
-
sparsity basis = 1 - density
- dim
-
the number of rows in the matrix
- dim2
-
the number of columns in the matrix
- max
-
generate integers in the range 0 (inclusive) to max (inclusive)
- min
-
generate integers in the range 0 (inclusive) to max (inclusive)
- stream
-
the random number stream
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateMatclass Objecttrait Matchableclass AnyShow all
The first 1000 seeds for the 'MRG31k3p' random number generator.
The first 1000 seeds for the 'MRG31k3p' random number generator.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
RandomSeeds.type
The first 1000 seeds for the LCG random number generator.
The first 1000 seeds for the LCG random number generator.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
RandomSeeds3.type
The RandomSet
class generates a random set/subset of integers.
The RandomSet
class generates a random set/subset of integers.
Value parameters
- count
-
the size of the set (number of integer elements)
- max
-
generate integers in the range 0 (inclusive) to max (inclusive)
- skip
-
skip this number, i.e, do not use it
- stream
-
the random number stream
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateSetclass Objecttrait Matchableclass AnyShow all
The RandomSetS
class generates a random set/subset of strings.
The RandomSetS
class generates a random set/subset of strings.
Value parameters
- count
-
the size of the set (number of strings)
- stream
-
the random number stream
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateSetclass Objecttrait Matchableclass AnyShow all
The RandomSetW
class generates a random set/subset of words.
The RandomSetW
class generates a random set/subset of words.
Value parameters
- cRange
-
the range of characters to generate
- count
-
the size of the set (number of words)
- lRange
-
the range of string lengths to generate
- nWords
-
the numbers of words to predetermine.
- stream
-
the random number stream
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateSetclass Objecttrait Matchableclass AnyShow all
The RandomStr
class generates random strings.
The RandomStr
class generates random strings.
Value parameters
- cRange
-
the range of characters to generate
- lRange
-
the range of string lengths to generate
- stream
-
the random number stream
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
The RandomTenD
class generates a random tensor of doubles.
The RandomTenD
class generates a random tensor of doubles.
Value parameters
- density
-
sparsity basis = 1 - density
- dim
-
the number of rows in the tensor
- dim2
-
the number of columns in the tensor
- dim3
-
the number of sheets in the tensor
- max
-
generate integers in the range 0 (inclusive) to max (inclusive)
- min
-
generate integers in the range 0 (inclusive) to max (inclusive)
- stream
-
the random number stream
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateTenclass Objecttrait Matchableclass AnyShow all
The RandomVecD
class generates a random vector of doubles. Ex: (3.0, 2.0, 0.0, 4.0, 1.0) has dim = 5 and max = 4.
The RandomVecD
class generates a random vector of doubles. Ex: (3.0, 2.0, 0.0, 4.0, 1.0) has dim = 5 and max = 4.
Value parameters
- density
-
sparsity basis = 1 - density
- dim
-
the dimension/size of the vector (number of elements)
- max
-
generate doubles in the range min to max
- min
-
generate doubles in the range min to max
- runLength
-
the maximum run length
- stream
-
the random number stream
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateVecclass Objecttrait Matchableclass AnyShow all
The RandomVecD_
class generates a random vector of doubles. Ex: (3.0, 2.0, 0.0, 4.0, 1.0) has dim = 5. This version does not consider density or runLength.
The RandomVecD_
class generates a random vector of doubles. Ex: (3.0, 2.0, 0.0, 4.0, 1.0) has dim = 5. This version does not consider density or runLength.
Value parameters
- dim
-
the dimension/size of the vector (number of elements)
- max
-
generate doubles in the range min to max
- min
-
generate doubles in the range min to max
- stream
-
the random number stream
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateVecclass Objecttrait Matchableclass AnyShow all
The RandomVecI
class generates a random vector of integers. Ex: (3, 2, 0, 4, 1) has dim = 5 and max = 4.
The RandomVecI
class generates a random vector of integers. Ex: (3, 2, 0, 4, 1) has dim = 5 and max = 4.
Value parameters
- dim
-
the dimension/size of the vector (number of elements)
- max
-
generate integers in the range min (inclusive) to max (inclusive)
- min
-
generate integers in the range min (inclusive) to max (inclusive)
- skip
-
skip this number, i.e, do not use it
- stream
-
the random number stream
- unique
-
whether the integers must be unique
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateVecclass Objecttrait Matchableclass AnyShow all
The RandomVecS
class generates a random vector of strings. Ex: ("3", "2", "0", "4", "1") has dim = 5 and max = 4.
The RandomVecS
class generates a random vector of strings. Ex: ("3", "2", "0", "4", "1") has dim = 5 and max = 4.
Value parameters
- dim
-
the dimension/size of the vector (number of elements)
- stream
-
the random number stream
- unique
-
whether the strings must be unique
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateVecclass Objecttrait Matchableclass AnyShow all
The RandomVecSample
class generates random sample from a population.
The RandomVecSample
class generates random sample from a population.
Value parameters
- pop
-
the size of the population (0, 1, ... pop-1)
- samp
-
the size of the random samples
- stream
-
the random number stream
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateVecclass Objecttrait Matchableclass AnyShow all
The RandomVecTrend
class generates random variate vectors useful for for creating synthetic time-series data. Applies an additive noise model.
The RandomVecTrend
class generates random variate vectors useful for for creating synthetic time-series data. Applies an additive noise model.
Value parameters
- dim
-
the dimension/size of the vector (number of elements)
- noise
-
the ditribution/variate used to produce the random noise
- stream
-
the random number stream
- trend
-
the function representing deterministic component of the time-series
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass VariateVecclass Objecttrait Matchableclass AnyShow all
The RandomWord
class generates random words from a predetermined set.
The RandomWord
class generates random words from a predetermined set.
Value parameters
- cRange
-
the range of characters to generate
- lRange
-
the range of string lengths to generate
- nWords
-
the numbers of words to predetermine.
- stream
-
the random number stream
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates Sharp
(Deterministic) random variates. This discrete RV models the case when the variance is 0.
This class generates Sharp
(Deterministic) random variates. This discrete RV models the case when the variance is 0.
Value parameters
- stream
-
the random number stream
- x
-
the value for this constant distribution
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates StdNormal
random variates using the acceptance-rejection method.
This class generates StdNormal
random variates using the acceptance-rejection method.
Value parameters
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
The StreamMaker
object computes seeds for Random
and Random2
, both of which implement the 'MRG31k3p' random number generator. This generator has a period length around 2^185. Each seed is a 6-dimensional vector of 32-bit integers.
The StreamMaker
object computes seeds for Random
and Random2
, both of which implement the 'MRG31k3p' random number generator. This generator has a period length around 2^185. Each seed is a 6-dimensional vector of 32-bit integers.
Attributes
- See also
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
StreamMaker.type
This class generates StudentT
(Student's t) random variates. This continuous RV models cases where data are normally distributed, but variability increases since the variance is unknown.
This class generates StudentT
(Student's t) random variates. This continuous RV models cases where data are normally distributed, but variability increases since the variance is unknown.
Value parameters
- df
-
the degrees of freedom
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
The TimeVariate
abstract class serves as a superclass for time-based random variates such Poisson Processes.
The TimeVariate
abstract class serves as a superclass for time-based random variates such Poisson Processes.
Value parameters
- stream
-
the random number stream
Attributes
- Supertypes
- Known subtypes
-
class NHPoissonProcessclass PoissonProcess
This class generates Trapezoidal
random variates. This continuous RV models cases where outcomes cluster between two modes. Both Uniform and
Triangularare special cases of
Trapezoidal`.
This class generates Trapezoidal
random variates. This continuous RV models cases where outcomes cluster between two modes. Both Uniform and
Triangularare special cases of
Trapezoidal`.
Value parameters
- a
-
the minimum
- b
-
the maximum
- c
-
the first mode
- d
-
the second mode
- stream
-
the random number stream
Attributes
- See also
-
iopscience.iop.org/0026-1394/44/2/003/pdf/0026-1394_44_2_003.pdf
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates simple Triangular
random variates with the mode in the middle. This continuous RV models cases where outcomes cluster around the mode.
This class generates simple Triangular
random variates with the mode in the middle. This continuous RV models cases where outcomes cluster around the mode.
Value parameters
- a
-
the lower bound
- b
-
the upper bound
- c
-
the mode
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates Trinomial
random variates. While Binomial is based on trials with two outcomes, success (1) or failure (0). Trinomial is based on trials with three outcomes, high (2), medium (1) or low (0). This discrete RV models the result of 'n' trials.
This class generates Trinomial
random variates. While Binomial is based on trials with two outcomes, success (1) or failure (0). Trinomial is based on trials with three outcomes, high (2), medium (1) or low (0). This discrete RV models the result of 'n' trials.
Value parameters
- n
-
the number of independent trials
- p
-
the probability of high (2)
- q
-
the probability of medium (1)
- stream
-
the random number stream
Attributes
- See also
-
onlinecourses.science.psu.edu/stat414/node/106 FIX - fails distribution test - maybe due to 'pf' method
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
This class generates Uniform
random variates in the range (a, b). This continuous RV models equi-probable outcomes.
This class generates Uniform
random variates in the range (a, b). This continuous RV models equi-probable outcomes.
Value parameters
- a
-
the lower bound
- b
-
the upper bound
- stream
-
the random number stream
Attributes
The Variate
abstract class serves as a base class for all the Random Variate (RV) generators. They use one of the Random Number Generators (RNG's) from Random
to generate numbers following their particular distribution. Random Variate Generators (RVG's) for thirty popular probability distributions are implemented as extensions of Variate. Still need to add one.
The Variate
abstract class serves as a base class for all the Random Variate (RV) generators. They use one of the Random Number Generators (RNG's) from Random
to generate numbers following their particular distribution. Random Variate Generators (RVG's) for thirty popular probability distributions are implemented as extensions of Variate. Still need to add one.
Value parameters
- stream
-
the random number stream (0 until N_STREAMS)
Attributes
- See also
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class Bernoulliclass Betaclass Binomialclass Cauchyclass ChiSquareclass Diceclass Discreteclass Erlangclass Exponentialclass Fisherclass Gammaclass Geometricclass HyperExponentialclass HyperExponential_class HyperGeometricclass Knownclass LogNormalclass Logisticclass NegativeBinomialclass Normalclass Poissonclass PowerLawclass Randiclass Randi0class RandiU0class RandomStrclass RandomWordclass Sharpclass StdNormalclass StudentTclass TimeVariateclass NHPoissonProcessclass PoissonProcessclass Trapezoidalclass Triangularclass Trinomialclass Uniformclass WeibullShow all
Value parameters
- stream
-
the random number stream (0 until N_STREAMS)
Attributes
- Companion
- object
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class NormalMatclass RandomMatD
The VariateMat
companion object provides a method to add correlation to a matrix.
The VariateMat
companion object provides a method to add correlation to a matrix.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
VariateMat.type
The VariateSet
abstract class serves as a base class for all the Random Variate Set (RVS) generators. They use one of the Random Number Generators (RNG's) from Random.scala to generate numbers following their particular multivariate distribution.
The VariateSet
abstract class serves as a base class for all the Random Variate Set (RVS) generators. They use one of the Random Number Generators (RNG's) from Random.scala to generate numbers following their particular multivariate distribution.
Value parameters
- stream
-
the random number stream (0 until N_STREAMS)
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
Value parameters
- stream
-
the random number stream (0 until N_STREAMS)
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class NormalTenclass RandomTenD
Value parameters
- stream
-
the random number stream (0 until N_STREAMS)
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class Multinomialclass NormalVecclass NormalVec_class NormalVec_cclass PermutedVecDclass PermutedVecIclass ProbabilityVecclass RandomVecDclass RandomVecD_class RandomVecIclass RandomVecSclass RandomVecSampleclass RandomVecTrendclass PoissonProcessclass NH_PoissonProcessShow all
This class generates Weibull
random variates. This continuous RV models the time for an event to occur.
This class generates Weibull
random variates. This continuous RV models the time for an event to occur.
Value parameters
- alpha
-
the shape parameter
- beta
-
the scale parameter
- stream
-
the random number stream
Attributes
- See also
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Variateclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Types
The function type for distribution functions, including (1) Cumulative Distribution Function (CDF) (2) inverse Cumulative Distribution Function (iCDF) The arguments are Double
for coordinate 'x' or probability 'p' and a Vector
of parameters, e.g., degrees of freedom.
The function type for distribution functions, including (1) Cumulative Distribution Function (CDF) (2) inverse Cumulative Distribution Function (iCDF) The arguments are Double
for coordinate 'x' or probability 'p' and a Vector
of parameters, e.g., degrees of freedom.
Attributes
Type definition for parameters to a distribution. Vector
is used instead of Array
since they are covariant, while Scala arrays are not.
Type definition for parameters to a distribution. Vector
is used instead of Array
since they are covariant, while Scala arrays are not.
Attributes
Value members
Concrete methods
The cDFTest_ChiSquare
main function tests the 'CDF.chiSquareCDF' method.
The cDFTest_ChiSquare
main function tests the 'CDF.chiSquareCDF' method.
runMain scalation.random.cDFTest_ChiSquare
Attributes
The cDFTest_Empirical
main function tests the 'CDF.buildEmpiricalCDF' method.
The cDFTest_Empirical
main function tests the 'CDF.buildEmpiricalCDF' method.
runMain scalation.random.cDFTest_Empirical
Attributes
The cDFTest_Exponential
main function tests the 'CDF.exponentialCDF' method.
The cDFTest_Exponential
main function tests the 'CDF.exponentialCDF' method.
runMain scalation.random.cDFTest_Exponential
Attributes
The cDFTest_Fisher
main function tests the 'CDF.fisherCDF' method.
The cDFTest_Fisher
main function tests the 'CDF.fisherCDF' method.
runMain scalation.random.cDFTest_Fisher
Attributes
The cDFTest_Fisher2
main function tests the 'CDF.fisherCDF' method.
The cDFTest_Fisher2
main function tests the 'CDF.fisherCDF' method.
runMain scalation.random.cDFTest_Fisher2
Attributes
The cDFTest_Normal
main function tests the 'CDF.normalCDF' method.
The cDFTest_Normal
main function tests the 'CDF.normalCDF' method.
runMain scalation.random.cDFTest_Normal
Attributes
The cDFTest_Normal
main function tests difference between different implementations of the 'normalCDF' method in the CDF
object.
The cDFTest_Normal
main function tests difference between different implementations of the 'normalCDF' method in the CDF
object.
runMain scalation.random.cDFTest_Normal_Diff
Attributes
The cDFTest_StudentT
main function tests the 'CDF.studentTCDF' method.
The cDFTest_StudentT
main function tests the 'CDF.studentTCDF' method.
runMain scalation.random.cDFTest_StudentT
Attributes
The cDFTest_Uniform
main function tests the 'CDF.uniformCDF' method.
The cDFTest_Uniform
main function tests the 'CDF.uniformCDF' method.
runMain scalation.random.cDFTest_Uniform
Attributes
The cDFTest_Weibull
main function tests the 'CDF.weibullCDF' method.
The cDFTest_Weibull
main function tests the 'CDF.weibullCDF' method.
runMain scalation.random.cDFTest_Weibull
Attributes
The cLTTest
main function is used to test the Uniform
random variate generator for illustrating the Central Lmiit Theorem. Try adding difference numbers of random values and other distributions.
The cLTTest
main function is used to test the Uniform
random variate generator for illustrating the Central Lmiit Theorem. Try adding difference numbers of random values and other distributions.
runMain scalation.random.cLTTest
Attributes
The diceTest
main function is used to test the Randi
random variate generator for the case of rolling two dice. The probability mass function (pmf) is plotted.
The diceTest
main function is used to test the Randi
random variate generator for the case of rolling two dice. The probability mass function (pmf) is plotted.
runMain scalation.random.diceTest
Attributes
The poissonProcessTest
main function is used to test both the PoissonProcess
and NHPoissonProcess
classes.
The poissonProcessTest
main function is used to test both the PoissonProcess
and NHPoissonProcess
classes.
Attributes
The quantileTest_ChiSquare
main function tests the 'Quantile.chiSquareInv' method.
The quantileTest_ChiSquare
main function tests the 'Quantile.chiSquareInv' method.
runMain scalation.random.quantileTest_ChiSquare
Attributes
The quantileTest_Empirical
main function tests the 'Quantile.empiricalInv' method.
The quantileTest_Empirical
main function tests the 'Quantile.empiricalInv' method.
runMain scalation.random.quantileTest_Empirical
Attributes
The quantileTest_Exponential
main function tests the 'Quantile.exponentialInv' method.
The quantileTest_Exponential
main function tests the 'Quantile.exponentialInv' method.
runMain scalation.random.quantileTest_Exponential
Attributes
The quantileTest_Fisher
main function tests the 'Quantile.fisherInv' method.
The quantileTest_Fisher
main function tests the 'Quantile.fisherInv' method.
runMain scalation.random.quantileTest_Fisher
Attributes
The quantileTest_Normal
main function tests the 'Quantile.normalInv' method.
The quantileTest_Normal
main function tests the 'Quantile.normalInv' method.
runMain scalation.random.quantileTest_Normal
Attributes
The quantileTest_StudentT
main function tests the 'Quantile.studentTInv' method.
The quantileTest_StudentT
main function tests the 'Quantile.studentTInv' method.
runMain scalation.random.quantileTest_StudentT
Attributes
The quantileTest_Uniform
main function tests the 'Quantile.uniformInv' method.
The quantileTest_Uniform
main function tests the 'Quantile.uniformInv' method.
runMain scalation.random.quantileTest_Uniform
Attributes
The rNGTest
main function conducts three simple tests of the Random Number Generators.
The rNGTest
main function conducts three simple tests of the Random Number Generators.
runMain scalation.random.rNGTest
Attributes
The randomStrTest
main function is used to test the Random Variate String (RVS) generator from the RandomStr
class.
The randomStrTest
main function is used to test the Random Variate String (RVS) generator from the RandomStr
class.
runMain scalation.random.randomStrTest
Attributes
The randomWordTest
main function is used to test the Random Variate Word (RVW) generator from the RandomWord
class.
The randomWordTest
main function is used to test the Random Variate Word (RVW) generator from the RandomWord
class.
runMain scalation.random.randomWordTest
Attributes
The streamMaker3
main function finds seeds for the Random3
random number generator. This generator has a period length around 2^31. Each seed is a 32-bit integer.
The streamMaker3
main function finds seeds for the Random3
random number generator. This generator has a period length around 2^31. Each seed is a 32-bit integer.
runMain scalation.random.streamMaker3
Attributes
The streamMakerGen
main function generates and prints the first k seeds for the the 'MRG31k3p' random number generator's streams.
The streamMakerGen
main function generates and prints the first k seeds for the the 'MRG31k3p' random number generator's streams.
runMain scalation.random.streamMakerGen
Attributes
The variateMatTest
main function is used to test the Random Variate Matrix (RVM) generators from the classes derived from VariateMat
.
The variateMatTest
main function is used to test the Random Variate Matrix (RVM) generators from the classes derived from VariateMat
.
runMain scalation.random.variateMatTest
Attributes
The variateSetTest
object is used to test the Random Variate Set (RVS) generators from the classes derived from VariateSet
.
The variateSetTest
object is used to test the Random Variate Set (RVS) generators from the classes derived from VariateSet
.
runMain scalation.random.variateSetTest
Attributes
The variateSetTest2
object is used to test the Random Variate Set (RVS) generators from the classes derived from VariateSet
.
The variateSetTest2
object is used to test the Random Variate Set (RVS) generators from the classes derived from VariateSet
.
runMain scalation.random.variateSetTest2
Attributes
The variateSetTest3
object is used to test the Random Variate Set (RVS) generators from the classes derived from VariateSet
.
The variateSetTest3
object is used to test the Random Variate Set (RVS) generators from the classes derived from VariateSet
.
runMain scalation.random.variateSetTest3
Attributes
The variateTenTest
main function is used to test the Random Variate Matrix (RVT) generators from the classes derived from VariateTen
.
The variateTenTest
main function is used to test the Random Variate Matrix (RVT) generators from the classes derived from VariateTen
.
runMain scalation.random.variateTenTest
Attributes
The variateTest
main function conducts two simple tests of the Random Variate Generators: (1) Means Test and (2) Chi-square Goodness of Fit Test. FIX: need to add (3) Variance Test and (4) K-S Goodness of Fit Test.
The variateTest
main function conducts two simple tests of the Random Variate Generators: (1) Means Test and (2) Chi-square Goodness of Fit Test. FIX: need to add (3) Variance Test and (4) K-S Goodness of Fit Test.
runMain scalation.random.variateTest
Attributes
The variateVecTest
main function is used to test the Random Variate Vector (RVV) generators from the classes derived from VariateVec
.
The variateVecTest
main function is used to test the Random Variate Vector (RVV) generators from the classes derived from VariateVec
.
runMain scalation.random.variateVecTest