PoissonProcess

scalation.random.PoissonProcess
case class PoissonProcess(lambda: Double, stream: Int) extends TimeVariate

The PoissonProcess class generates arrival times according to a Poisson Process. Given the current arrival time 't', generate the next arrival time.

Value parameters

lambda

the arrival rate (arrivals per unit time)

stream

the random number stream

Attributes

See also
Graph
Supertypes
trait Serializable
trait Product
trait Equals
class TimeVariate
class Variate
class Object
trait Matchable
class Any
Show all

Members list

Value members

Concrete methods

def gen: Double

Generate Poisson arrival times using and exponential random variable.

Generate Poisson arrival times using and exponential random variable.

Attributes

def gen1(z: Double): Double

Determine the next random number for the particular distribution. This version allows one paramater.

Determine the next random number for the particular distribution. This version allows one paramater.

Value parameters

z

the limit paramater

Attributes

def meanF(tt: Double): Double

Compute the mean number of arrivals for amount of time 'tt'.

Compute the mean number of arrivals for amount of time 'tt'.

Value parameters

tt

a number of intervals

Attributes

def pf(k: Int): Double

Compute the probability P[ N(t) = k ] using a general factorial function implemented with the Gamma function and Ramanujan's Approximation.

Compute the probability P[ N(t) = k ] using a general factorial function implemented with the Gamma function and Ramanujan's Approximation.

Value parameters

k

the number of arrivals in the interval

Attributes

See also
def pf(k: Int, tau: Double): Double

Compute the probability P[ (N(t + tau) - N(t)) = k] using a general factorial function implemented with the Gamma function and Ramanujan's Approximation. Switches to pf_ln for k >= 170 to handle large k-values.

Compute the probability P[ (N(t + tau) - N(t)) = k] using a general factorial function implemented with the Gamma function and Ramanujan's Approximation. Switches to pf_ln for k >= 170 to handle large k-values.

Value parameters

k

the number of arrivals in the interval

tau

the length of the interval

Attributes

def pf(k: Int, a: Double, b: Double): Double

Compute the probability P [ (N(b) - N(a)) = k ].

Compute the probability P [ (N(b) - N(a)) = k ].

Value parameters

a

the left end of the interval

b

the right end of the interval

k

the number of arrivals in the interval

Attributes

def pf_ln(k: Int, tau: Double): Double

Compute the probability P[ (N(t + tau) - N(t)) = k] using the log of Ramanujan's Approximation formula.

Compute the probability P[ (N(t + tau) - N(t)) = k] using the log of Ramanujan's Approximation formula.

Value parameters

k

the number of arrivals in the interval

tau

the length of the interval

Attributes

def reset(): Unit

Reset the global time value to zero.

Reset the global time value to zero.

Attributes

Inherited methods

def count(a: Double, b: Double): Int

Attributes

Inherited from:
TimeVariate
def count(tt: Double): Int

Count then number of sample until the time exceeds tt.

Count then number of sample until the time exceeds tt.

Value parameters

tt

the time point

Attributes

Inherited from:
TimeVariate
def discrete: Boolean

Determine whether the distribution is discrete or continuous.

Determine whether the distribution is discrete or continuous.

Attributes

Inherited from:
Variate
def igen: Int

Determine the next random integer for the particular distribution. It is only valid for discrete random variates.

Determine the next random integer for the particular distribution. It is only valid for discrete random variates.

Attributes

Inherited from:
Variate
def igen1(z: Double): Int

Determine the next random integer for the particular distribution. It is only valid for discrete random variates. This version allows one parameter.

Determine the next random integer for the particular distribution. It is only valid for discrete random variates. This version allows one parameter.

Value parameters

z

the limit parameter

Attributes

Inherited from:
Variate
def pf(z: Double): Double

Compute the probability function (pf): The probability density function (pdf) for continuous RV's or the probability mass function (pmf) for discrete RV's.

Compute the probability function (pf): The probability density function (pdf) for continuous RV's or the probability mass function (pmf) for discrete RV's.

Value parameters

z

the mass point whose probability is sought

Attributes

Inherited from:
TimeVariate
def pmf(k: Int): Array[Double]

Return the entire probability mass function (pmf) for finite discrete RV's.

Return the entire probability mass function (pmf) for finite discrete RV's.

Value parameters

k

number of objects of the first type

Attributes

Inherited from:
Variate
def productElementNames: Iterator[String]

Attributes

Inherited from:
Product
def productIterator: Iterator[Any]

Attributes

Inherited from:
Product
def sgen: String

Determine the next random string for the particular distribution. For better random strings, overide this method.

Determine the next random string for the particular distribution. For better random strings, overide this method.

Attributes

Inherited from:
Variate
def sgen1(z: Double): String

Determine the next random string for the particular distribution. For better random strings, overide this method. This version allows one parameter.

Determine the next random string for the particular distribution. For better random strings, overide this method. This version allows one parameter.

Value parameters

z

the limit parameter

Attributes

Inherited from:
Variate

Inherited fields

protected val MAXFAC: Int

Attributes

Inherited from:
TimeVariate
val mean: Double

Precompute the mean for the particular distribution.

Precompute the mean for the particular distribution.

Attributes

Inherited from:
TimeVariate